

Hardwire Torque Screwdriver - RNTDLS / RTDLS

- Rotary slip prevents over-torque.
- Accuracy according to EN ISO 6789 (type II, class E).
- Curl cord can be extended to approx. 2m in full extension.
- Limit switch specification is AC/DC 30V below 1A.
- ► 1/4" female hex insert for standard bits according to DIN 3126 E 6.3 / ISO 1173.
- Models 260cN and 500cN including torque adjusting tool.

Socket for LS cable sold separately.

O RNTDLS series: Preset delivery on

request. Then please specify the torque

value in the order (model name X torque

O RTDLS series: imperial (lbf·in) or metric

(kgf·cm) scale on request.

Options

value).

Rotary Slip Torque Driver with Limit Switch

Error-proofing (Pokayoke) torque driver with limit switch output to eliminate missed tightening. Ideal for torque verification assembly processes. The toggle is activated when set torque is achieved. Rotary slip occurs simultaneously with output of a contact signal from the limit switch.

Establish interlock system at assembly line by connecting the signals from limit switch to external devices such as **PLC** (Programmable Logic Controller). Limit switch can alternatively be connected to CNA-4mk3 to create tightening count management system.

Tohnichi has changed the locker design from old circled shape to the new hexagonal shape and this could prevent the torque screwdriver from rolling and unexpected dropping. Lockers are important parts that maintain alignment of readings.

RNTDLS models are preset type. If you prefer torque setting prior to delivery, indicate torque value when you place the order.

LS wrenches/screwdrivers are supplied with a durable curl cord.

Mentioned products are compliant with calibration procedures of EN ISO 6789 type II class E.

Option: Aux. tightening tool for model 500cN.

Option: count checker CNA-4mk3.

Set torque value Serial Number Insertion Bit Depth L1 Curl cord

12

Model

INFO

RNTDLS											
Model	Part No.	Torque Range*			Applicable Screw			øD1	Weight	Hex	
		cN⋅m	ozf-in	lbf·in		tapping				inch	
RNTDLS 120 CN	T202104-LS	24 - 120	34 - 170	2.1 - 10	(M3.5)	M3 (M3.5)	166	24	0.32	1/4	
RNTDLS 260 CN	T202105-LS	52 - 260	74 - 368	4.4 - 22	M4 (M4.5)	M4	167	30	0.39	1/4	
RNTDLS 500 CN	T202106-LS	100 - 500	142 - 708	8.8 - 44	M5, M6	(M4.5)	175	33	0.48	1/4	

Hanging ring

RTDLS											
Model	Part No.	Torque Range*	Graduation	Applicable Screw			øD1	Weight			
		cN⋅m	cN·m		tapping				inch		
RTDLS 120 CN	T202013-LS	24 - 120	1	(M3.5)	M3 (M3.5)	184	24	0.34	1/4		
RTDLS 260 CN	T202017-LS	52 - 260	2	M4 (M4.5)	M4	201	30	0.45	1/4		
RTDLS 500 CN	T202020-LS	100 - 500	5	M5, M6	(M4.5)	212	33	0.54	1/4		

^{*} Table showing manufacturer's specifications. Usage in medium range (approx. 1/3 to 4/5 of rated capacity) is recommended. If you regularly worked close to the limit of load (maximum capacity), a larger model or tool might be more recommendable.

